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Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory

Hanns Walter Miler! and Andreas Engél
IMax-Planck-Institut fu Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
2Institut fir Theoretische Physik, Otto-von-Guericke-Universitagdeburg, Postfach 4120, D-39016 Magdeburg, Germany
(Received 14 June 1999

Part of the field dependent dissipation in ferrofluids occurs due to the rotational motion of the ferromagnetic
grains relative to the viscous flow of the carrier fluid. The classical theoretical description due to Skiibmis
Eksp. Teor. Fiz61, 2411(1971) [Sov. Phy JETR4, 1291(1972]) uses a mesoscopic treatment of the particle
motion to derive a relaxation equation for the nonequilibrium part of the magnetization. Complementary, the
hydrodynamic approach of LilPhys. Rev. Lett70, 3580(1993] involves only macroscopic quantities and
results in dissipative Maxwell equations for the magnetic fields in the ferrofluid. Different stress tensors and
constitutive equations lead to deviating theoretical predictions in those situations, where the magnetic relax-
ation processes cannot be considered instantaneous on the hydrodynamic time scale. We quantify these dif-
ferences for two situations of experimental relevance, namely, a resting fluid in an oscillating oblique field and
the damping of parametrically excited surface waves. The possibilities of an experimental differentiation
between the two theoretical approaches is discugs$d163-651%99)15011-6

PACS numbdis): 75.50.Mm, 47.32-y, 47.35:+i

I. INTRODUCTION analytic expression for the magnetic field dependencgof
[4]. We will refer to this approach as theesoscopitheory

The interplay between hydrodynamic behavior and magsince it starts with a rather detailed characterization of the
netic field sensitivity gives rise to a variety of new physical processes occurring on a 10 nm scale in order to determine
effects and makes ferrofluids a fascinating subject of remacroscopic properties such as the viscosity.
search with many interesting technical applicati¢fis-3]. Quite complementary, the same phenomena can be de-
Practically all hydrodynamic properties can be modified orscribed within the framework of nonequilibrium thermody-
modulated by an external magnetic field. Although verynamics. Appropriate magnetic field variables must then be
similar effects are possible with electrically polarized fluids,introduced into the set of relevant thermodynamic quantities.
the coupling of the fields to the hydrodynamics is more pro-New dissipative currents show up when the system is driven
nounced in the magnetic case. Since the experimental hawout of equilibrium. They are coupled to the thermodynamic
dling of strong magnetic fields is simpler than that of electricforces by additional Onsager coefficients. This program was
ones, ferrofluids are the experimenters choice to analyze thearried out by Liu and co-workers in a series of papers
field affected hydrodynamic motion. [5,8,9 and gave rise to what is called the/drodynamic

On the other hand, a thorough theoretical understandinylaxwell theory. Making no reference at all to the micro-
of the many aspects of ferrofluid motion is a rather ambitiousscopic mechanism of dissipation this approach has the ap-
task[4,5]. This is in particular true if the motion is such that pealing feature of being very general and applicable to elec-
dissipation effects are important. The theoretical analysisrically or magnetically polarizable continuous media. As in
must then account for the deviations from and the relaxatiomvery hydrodynamic theory the Onsager coefficients are free
towards equilibrium in a consistent and quantitatively accuparameters which have to be determined experimentally or
rate way. from a microscopic theory.

One of the interesting properties of ferrofluids is their The detailed quantitative relation between the two theo-
tunable viscosity which can be controlled by an externalretical approaches is presently not completely clear and there
magnetic field. This so called magnetoviscous effect was firshas been some controversy in the literature over recent years.
observed experimentally by McTaguyé]. Qualitatively it In order to contribute to a clarification of this issue we in-
can be accounted f¢7] by magnetic torques acting upon the vestigate in the present paper the consequences of both the
suspended ferromagnetic particles: depending on the relativeesoscopic and the hydrodynamic theory for two simple ex-
orientation between magnetic field and local vorticity theperimental setups involving ferrofluids. On the one hand, we
particle rotation is hindered. The friction at the coated par-analyze the influence of an oscillating oblique magnetic field
ticle surfaces generates an extra dissipation and thus leadsda a ferrofluid at rest, on the other hand we investigate the
an enhanced effective viscosity. This additional rotationaldamping of parametrically driven surface waves on the fer-
friction is described by a “rotational viscosity’g. Based rofluid in a constant external magnetic field perpendicular to
on the theory of rotational Brownian motion of noninteract- the undisturbed surface. Both situations are easily accessible
ing rigid dipoles, Shliomid4] developed a theoretical de- to experiments. Interestingly the two theoretical approaches
scription of this effect. The basic ingredient is a relaxationgive rise todifferentresults for some of the relevant quanti-
equation for the nonequilibrium part of the magnetizationties. We finally discuss whether these differences are pro-
resulting from a stochastic description of an ensemble ofiounced enough to allow an experimental decision between
ferromagnetic grains. This treatment allows us to derive arthe theories.
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II. EQUATIONS OF MOTION where 7 denotes a relaxation time.

The fluid motion is governed by the hydrodynamic bal- The magnetic part of Fhe problgm 'S treated in the frame-
work of the magnetostatic approximation

ance equations for mass and linear momentum. For an in-
compressible ferrofluiddensity p) with a velocity field VXH=0 (5)
v(r,t) these equations read as ’

V.-v=0, (1) V.-B=0. (6)
With this simplification and the above expression for the
stress tenso3) the hydrodynamics obeys the Navier-Stokes

. - . .__.equation, which assumes the form
wherell;; is the stress tensor containing reactive and dissi- q

patiye contribution:{_see Iate)andg=(O,Q,— g) is the accel- PN+ p(v-V)IV=—Vp+ pg+ 7V2v+ uo(M - V)H
eration due to gravity. The two theoretical approaches under

consideration differ in their expressions for the stress tensor Mo

and the field equations. It will turn out that they produce + 5 VX(MXH). @)
different results when the magnetic relaxation timéusu-
ally between 10 and 10 s) cannot be neglected with
respect to the time scale,d kay, of the hydrodynamic mo-
tion. In those cases it is argued that the local magnetization The complete set of hydrodynamic Maxwell equations is
M(r,t) deviates from its local equilibrium valu®lgy(r,t) given by Ref[5]

giving rise to an additional dissipation, which we shall de-

p(d+V-V)v=V-TI+ pg, 2)

B. The field equations of the hydrodynamic theory

note here as “magnetodissipation.” This phenomenon is re- #D=VXH—je, 9B=—-VXE, 8
sponsible for the field dependent viscodity6,7], the mag-
netovortical resonancgl0,11], or the spectacular negative V-D=pe, V-B=0,

viscosity effec{12—14 detected recently in ferrofluids. ) . .
In order to simplify the mathematics we make throughoutWhereE andD <_jenote the.electrlc and d|splace_ment fields.

this paper the following approximations which do not re- For noncondgctlng ferrofluids there_are no electric c_:h_arges or

move the basic differences between the two approadies: currents, thuge;=0 andpe,=0. The fieldsH andE split into

The magnetic field within the ferrofiuid is weak enough to Féactive and dissipative parts

warrant a linear relationshim.,= xH, where the suscepti-

bility is supposed to be proport?onal to the dengityii) The H=H"+H" and E=E"+E®,

local nonequilibrium magnetizatiod deviates only slightly

from Mg,. (iii ) Magnetodissipation is treated in the so called

low-frequency limit characterized byw<<1.

where HR=ge/9B and ER=de/dD are derivatives of the
thermodynamic energy density and contain only equilib-
rium information. The dissipative field$® andEP represent
the off-equilibrium currents and are functions of the thermo-

A. Field equations in the mesoscopic theory dynamic forces. For isotropic isothermal situations and ne-
Following Shliomis[4] (see also Ref.1]) the stress tensor glecting off-diagonal couplings they depend only on the
for ferrofluids appears in the form electromagnetic fields in the local rest frame and are given
by [5]
Mo
HiTeS:— p+7H2 5ij+HiBj+77(ViVj+VjVi) 5 a R
HP=— —VX(ER+vXB)
“ Mo
0
+78ijk(MXH)k' (3) and
In Eq. (3) occurs the pressure field(r,t), the Maxwell B

D_ R
stress tensor with the inductioB=uy(H+M), and the E —E—OVX(H —vxD), 9
usual dissipative contribution proportional to the shear vis-

cosity 7. Moreover, the last term on the right-hand side ofwhere the parameters and 8 are Onsager coefficients. In
Eq. (3) arises if the magnetization exhibits an off-equilibrium the present paper we restrict ourselves to ferrofluids with a
component perpendicular td. It is related to the magneto- negligible dielectric susceptibility ;=0 (e.g., hydrocarbon
dissipation and guarantees the symmetry of the stress tensggsed ferrofluids giving rise to 8=0 (see also Ref[15])

if the local directions ofH andB do not coincide. The ap- implying E°P=0. Moreover, the ratio between time and
pearance oM in the stress tensdB) requires an extra con- gpace derivatives of fields, respectively,a$(ck) and for
stitutive equation for the off-equilibrium compone®di hydrodynamic frequenciesv<10® s and wavelengths
=M — xyH of the magnetization. Under the above simplifica- 1/k~10"3 m~! we may neglect the time derivative BXin

tions (i)—(iii) the following relation can be establish2l:  the Maxwell equationg8). This means that the magnetic
v field may be assumed to follow the fluid motion instanta-
V . . . _
SM=—7x| H+(v-V)H— . XHI|. (4) Egggsly. In this way we recover the magnetostatic field equa
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V-B=0, (10) HPB] in Eq. (13) by (1/2)8|]k(HD>< B)k:_(/.L0/2)8|Jk(M

X H), one arrives at
VXH=0.

1
hyd _ D D
At a liquid-air interface these fields are subjected to the usual IO TI75= woH - HP 5 — 5 (Hi'Bj+H[By), (15
continuity conditions for the normal component®fnd the

tangential component d. where terms of orderHP)? have been dropped. The stress
Using incompressibility we get from Eq€) and(9) the  tensors in Eq(15) differ by a diagonal element and a sym-
following constitutive relation for the dissipative field: metric nondiagonal contribution. For incompressible fluids

the isotropic increment just leads to a renormalization of the
pressure, which we won't pursue here. The nondiagonal in-
crement, however, gives rise to a dissipative force which
might be detectable in an experimdste below.

which is the analog t&M in the approach of Shliomis. For It is also instructive to compare the constitutive equations,
later use we introduce theactivecontribution to the mag- which determine the dissipative fields: From the identity
netization

H ——[(9 B+(VV)B—(BV)V] (11)
t 1
Mo

po(H+M)=B=uo(H M) = uo(1+ x)HR  (16)

1
MR=—B—HR, (12 one finds that the dissipative field contributiof! andHP
Mo coincide up to a prefactor:

This definition differs from the “real” magnetizatioiM 1 1
=B/uy—H in using only the reactive patR of the mag- HP=— 11y M—xH)=—7—4M. (17)
netic field. The advantage of this formulation is that for the X X
present case of constant and scalar susceptibility the fieldphe associated constitutive relations
B,HR, andMR= yHR are all parallel to each oth¢t6]. The
fact thatH and henceM are not parallel tdB is the very 1
reason for the magnetodissipative effeets 6] investigated OM=—7x| dH+(v-V)H— E(V XV) X H (18)
here.
With the assumption of the susceptibility being propor- a
tional to the density, the stress tensor of the fluid simplifies HP=—[4B+(v-V)B—(B-V)v], (19
to [5,17] Ho
however, are not fully compatible: Omitting the contribu-

H 2
H:}yd: _ 5, +HiRBJ_+ 2V v+ Viv)). tions of O(aw)*, EQ. (19 can be re-cast as

Mo | Rri2
P+2(H)

(13) HP=a(1+ x)[dH+ (v-V)H—(H-V)v]. (20)

The fluid dynamics is therefore governed by the Navier-By comparing the two first terms on the right-hand side of

Stokes equation, which using E@.3) acquires the form Egs. (18) and (20) and using Eq.(17) one can relate the
characteristic relaxation times §§8]

pdv+ p(VV)IvV=—Vp+pg+ 7V2v+ uoMRVHR

+BX(VXHP). (14) a=r—X

"1+

(21

The fourth term on the right-hand side of the Navier-Stokes . . . .
equation was simplified to involve only the magnitudes of | "€ third terms in Eqg18) and(20) describe different phys-

the vectorsM® and HR by exploiting the fact that they are ics. This is easy to see by considering a homogeneous sta-
parallel. tionary magnetic field: According to the mesoscopic theory,

Eq. (18), only a rotational flow is able to drive a magneto-
dissipative field. Contrary in the hydrodynamic approach,
Eq. (20) states that a flow gradient parallel to the magnetic
Let us first emphasize that the two descriptions introducedield suffices to excite a finitéiP. It is interesting to point
above are fully equivalent if the magnetic relaxation pro-out that the deviation between the constitutive equations,
cesses can be considered to be instantanepasr&0) on Egs.(18) and (20), drops out for a solid body rotation flow
the time scale of the hydrodynamic motion. In this case offield v=wXr, which is often investigated in the ferrofluid

C. Comparison between the two approaches

vanishing magnetodissipation we haw=HP=0, i.e., literature.

MR=M|H=HR, and thus the stress tens¢®8 and(13) or, To summarize this section: We observe two differences
respectively, the Navier-Stokes equatidids and (14) coin-  between the classical description of Shliomis and the hydro-
cide. dynamic Maxwell theory of Liu: One in the stress tensors

Differences between the two approaches arise due to thid;; and a second in the constitutive equations for the dissi-
treatment of the magnetodissipation occurring at firdiké pative fieldséM andHP, respectively. In the following we
and HP, respectively. By comparing Eq$3) and (13) and  investigate the possibilities of an experimental differentiation
expressing the antisymmetric part of the tensor elemeribetween the two theoretical approaches.
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lll. FERROFLUID AT REST IN AN OBLIQUE H®H? is maximum. We conclude that the resting fluid

OSCILLATING MAGNETIC FIELD cannot be in equilibrium, i.e., the force will drive a convec-
tive motion. With the aid of appropriate tracer particles ex-
posed to the surface of the fluid we expect the acceleration to
be easily detectable in an experiment.

We consider a resting ferrofluid layer exposed to a lin-
early polarized magnetic field®=(H{?),0H{?)coswt di-
rected oblique to the surface. Here and in the following,
fields in the air carry the superscript(2),” while fields
within the ferrofluid are denoted without superscript. IV. SURFACE WAVES WITH MAGNETODISSIPATION

The stress tensor in the air above the ferrofluid is taken as |, this section we investigate a setup, which aims at prob-

ing the different constitutive relatiorj€qgs. (18) and (19)].
8+ Hi(z)BJ(Z), (220  As outlined in Sec. Il C a nonrotational flow profile is most
appropriate for this purpose. Surface waves on a deep fluid
. ; are a classical example: The associated flow field is purely
where we assume a constant atmospheric pregstite potential, except in a thin boundary layer along the system

For a fluid at rest the constitutive equatic(l$) and (19) boundaries. By increasing the system dimensions this para

coincide and thus eventual discrepancies between the Wgc infiyence can be limited to the viscous skin layer be-

theories will result from the deviating stress tensors. To teSaath the free surface. Our aim is to derive the complex
possible differences we evaluate the tangential fofee gighersion relation for low frequency small amplitude sur-

- —_11@ i i . o .
=1~ L33’ acting upon a free surface element. By usingace waves with magnetodissipation taken into account.
the magnetic interface conditions fbr andB and owing to

the fact that isotropic tensor elements do not contribute to
tangential forces we obtain

2
Hi(j):_

patm.¢ %(H(z))z

A. Surface waves without magnetodissipation

In this subsection we review the present knowledge on
Mo small amplitude surface waves on a ferrofluid in a static
- TTX[HZ‘%HX_HX‘%HZ] magnetic fieldH,; normal to the surface. Witlz= (x,t)
(23) =€ Y we denote the surface deflection in vertieali-
rection depending on the horizontal coordinatnd on time
and t. The real part of the complex valued functian(k)
=w'(k)+iw"(k) reflects the wave dispersion, while the
f{"yd: _ HEBz: _ ﬂBzath_ (24) imaginary part accounts for the decay rate.
0 For a nonviscous=0) ferrofluid »”(k) vanishes iden-

. ) . tically and the inviscid wave dispersiofindicated by the
The computation of; requires knowledge dfi andB within subscript, “0”) is given by[1,19]
the ferrofluid. From the respective constitutive equations and ' '
the interface conditions we find 21 H o Mo X2 w2 2s i
, =gk—— —F—F— + —k>.
(2) @Ol e =0k @ e

1 .
mes_ — | 4(2) z fot (29
H > Hy ’O’1+X—inX e c.c. (25)

e 22 (M, H,— oM Hy) =

Here y denotes the coefficient of surface tension. The mag-

a0 H@ @ | ot netic field leads to a negative contribution proportionatto
BYS="7| 4 0H" [e+tce. (200 |f H,,,is sufficiently strongu? becomes negative, indicating
mﬂwa the onset of the Rosensweig instability.

The effect of viscosity on the dispersion has been inves-
tigated theoretically in Ref$20,21 under the assumption of
an infinitely fast magnetic relaxatidwanishing magnetodis-
sipative effeck It is found that the expression fas(k) can
feS=0((7w)?) (27) no longer be given explicitly, rather the following implicit
relation applies,

Evaluating the tangential stres4@8) and(24) up to leading
order inTw or, respectivelypw we get

and 5
D(K, ») = w?— wj(K)+ X(K,0)=0 (30)
Mo .
fpyd:7aw(1+X)H;2)H§2)sm 20t+0((aw)?). where the viscous contribution reads
(28) q
' 2 2] 1
At the considered accuracy level, the mesoscopic approach X(k, )= 4l ovk®+4(vk%) [k 1]' (31)

states that the resting ferrofluid is in equilibrium, while the

hydrodynamic Maxwell theory predicts a residual tangentiaHere v= 7/p is the kinematic viscosity and= Vk’—iw/v.
surface force oscillating with twice the excitation frequency.Note that the viscous contribution does not depend on the
This force drops out in the static limib—O0 or when the magnetic field and therefore coincides with the expression
applied field is directed normally or tangentially to the sur-for nonmagnetic fluid§22]. This is because the magnetic
face. The maximum effect is achieved for an inflection anglecontributions to the stress tensor are purely conservative at
of 45°, where the product of the incident field componentsvanishingdM or HP. In the mathematical derivation of Egs.
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H,y C. The motionless state and linearized equations
for the perturbations

As reference statéindex O we consider the motionless
(v=0) fluid with a flat ((=0) surface. The associated mag-
netic quantities are

- Bo=B{=(0,0,0H exy), (37)
~glkx-wi

X
MOZ ( O,O,lTXHext) y

1
HMB o 005 o

HEP=(0,0Hcx),
FIG. 1. Sketch of the experimental setup. A ferrofluid of infinite
lateral extension and infinite depth is exposed to a stationary mag- HP=8M=0.
netic fieldH,,, directed normally to the surface.
From the momentum balance with the appropriate boundary
(30) and(31) this is reflected by a decoupling of the magne-condition we get for the pressure
tostatic from the hydrodynamic problem. Later we will see
that this simplification no longer applies if magnetodissipa- Mo

X
X,z2)=—pQz— —
tive corrections are taken into account. Po(x.2) 9 2

2
Tty Haxe- (38)

_ Next we study the time evolution of small perturbations by
B. Formulation of the problem linearizing the field equations and their boundary conditions
with magnetodissipation included around the basic state solution. To this end we introduce

The investigation requires solving the equations of motiorsmall deviations denoted by=(u,0,w), op, ¢, b, b, h,

together with appropriate boundary conditions at the free ligh®, m. Linearizing the Navier-Stokes equatiofg) and
uid air interface. We consider a horizontally unbounded fer{14) we, respectively, find for the mesoscopic and the hydro-

rofluid layer of infinite depth{from z=0 toz=—=) in con-  dynamic approach
tact with air at its free surface. The layer is exposed to an

external stationary magnetic fieldg,;=(0,0Hy) directed pdN=—Vp+ pAv+ MoMoﬂzhﬂL@V
perpendicularly to the undisturbed surfasee Fig. 1 2
The balances of the normal and tangential stresses at the X [Mgx h+mx Ho] (39)
0 0

liquid air interface are expressed by the conditions

and
ni(IL; = II{P)n;= — »(V;n)n;, (32)

pdv=—V8p+ nAv+ oMoV h,+ pwoH ey VHD — 9,HP).
ti(I; — I1{)n; =0, (33 (40
Here we have exploited the fact thit, and M, are both
wheret(r,t) andn(r,t) denote local unit vectors tangential parallel to thez direction. The linear magnetostatic field

and normal to the surface, respectively. The stress tensor #guations remain unchanged
the air above the ferrofluid is given by E@2). The discon-

tinuity of the normal stress condition arises by virtue of the 0=V.-b=V-b® (41)
finite surface tensiory. The kinematic surface condition re-
quires OZVXh:VXh(Z). (42)
The boundary condition&5) and(36) are linearized by us-
A+ UIL=W, (34 ing the lowest order expressions
wherev=(u,0w). The second lateral space directipneed n=( _ ‘9_5 01l and t= ( 1 0‘7_5) (43)
not be considered. ax"’ "X
As usual the boundary conditions for the magnetic field at
the free surface read as to get
b,=b{?, (44)
(B—B®).n=0, (35) Lo
74
—_h@= -2
(H—H®).t=0. (36) M= =Mos, 49
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for the magnetic interface conditions. The kinematic surfacewvith
condition simplifies to

22
=W, (46) q°=k PEEIL (53)
while we get o I_a)
0=—pgs+op+uoMom,—2nd,w+ydgl  (47) " -
q= 1+k (54

for the normal stress balance at the surface. Introducing the
dimensionless magnetodissipative perturbation parameter We analyze these results in the following for a ferrofluid
with a magnetic susceptibility and viscosity appropriate for
o _ Y (48) sqrf_ace wave experimenfs.g., AP_G J12Ref.[23]) Ferrof-

n o 71+ x)2 ext: luidics]. In a moderate external field up td.,=15 kA/m,

which is below the Rosensweig threshold, the constant sus-

the condition for the tangential stress reads in the mesoscopieptibility approximation holds with an error better than 4%.
approach At this field strength the perturbation parameter given by Eq.
(51) is smaller than 0.06. For a quantitative investigation of
the magnetodissipative effect it is therefore sufficient to ex-
pandD(k,w) up to first order ink giving

alo THoX
- 2 2

2(&xw— I )= (Ut IW), (49)

whereas for the hydrodynamic Maxwell theory we simply D(k, )= w?— w3+ X(k,@)+ kXy (K, ,Hey) + O(k?),
BoHR = n(au+a,w). (500  with the magnetodissipative contributions

To elucidate the time evolution of the perturbed state we [ X |q
. : XK, @, Hex) = (vk?)? 5ol 1
assume for all lateral field depeidenmes a plane wave behav- Mo AR @t lex 2vkq 2+x |k
ior xexdi(kx—wt)], e.g., v=v(z)exfi(kx—wt)] or ¢ (56)
= ¢ exfdi(kx—wt)], etc. The associaterldependencéif ap-

propriate is indicated by a bar. We now first determine the
magnetic fields from Eqg41) and(42) in terms of the sur-

in the mesoscopic theory and

: : ) hvd 2i wvk? e
face deflection and the flow fieldv using the boundary Xk, 0, Hey) = 5F +2(vk9) F_l
conditions(44) and(45). Then we solve for the velocity field X
and impose the hydrodynamic boundary conditiodé® and 4+y  vk?
(50), respectively. The condition for nontrivial solutions of 77y — (57)

Eq. (47) finally yields the desired complex dispersion rela-
tion w(k). The explicit calculations are sketched in the Ap-in the hydrodynamic approach. We observe a different scal-

pendix. ing behavior with the shear visosity. The magnetodissipa-
tive correction according to E456) scales withv®?, while it
D. Results is only proportional tov in Eq. (57). This deviating propor-
The expressions we find for the implicit dispersion rela-tionality traces back to the constitutive equations. According
tion D(k,w) are of the form to Eq. (18) magnetodissipation is associated with rotational
flow and thus confined to the thin boundary layer beneath the

, o .| surface, where damping is proportionaht#? [24]. This is in
0=D"*w,k)= 0"~ wy(K) +4iwrk®+4(rvk%)) 1 —1 contrast to Eq(19), where the dissipative fieldl® is finite
over the whole fluid layer. In particular, dissipation within

3 the convective bulk, which is knowf25] to scale withwv,
— K(sz)ZL[—— 1} , (51) provides the leading contribution to EG7).
2+ x Lk Due to the smallness of, the magnetodissipative contri-

bution «Xy,(k,w) modifies the ordinary viscous shear damp-
_ ing X(k,w) only slightly. Moreover, when studying the field

I K
. i o x+2 dependence of the damping raté&(k,H has to ac-
—phyd — (2 2 p ping raté(k,Hq.) one has to ac
0=D"w.k)=(w"+ 2 wrk) vk? count for appreciable wave-number shifts resulting from the
1+ K e nondissipative magnetic contribution
2
K _ Mo X 2 2
R p T2ty e &8
— wg(K) +2(2+ k) v?k% 2, . . . .
1+ Kﬁ in D(k,w). SinceX(k,w) in turn is largelyk dependent, the

reactive term(58) strongly feeds back into the effective field
(520 dependence ofw”(Hey, k) and therefore masks the tiny
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-260 600 cobalt or cobalt ferritesthe magnetic relaxation process is
» B largely dominated by the Brownian rotation of the particles
5 15802 in the carrier matrix. In high viscosity carrier fluids the as-
£ 0l s sociated Brownian relaxation time can be large and reach the
2 g time scale of the hydrodynamic motion. This is the situation
c 560+= . . .. .
£ 2 in which magnetodissipation must be accounted for. We
© 5

have shown that this effect is treated differently by the ap-
540 proaches of Shliomis and Liu due to the use of different

stress tensors as well as distinct constitutive equations for the
1 058 dissipative fields.

In a ferrofluid layer at rest the constitutive equations co-
incide. If the surface is exposed to an oblique linearly polar-
ized magnetic field, the differing stress tensors lead to differ-
ent statements about whether the resting ferrofluid is in

41

(m’hyd/ @ 1)

40 5 0 15 o 5 s 1 equilibrium or not: Whereas the mesoscopic approach gives
H,,/(10° A/m) H,,/(10° Am) no deviation from equilibrium the hydrodynamic theory pre-
dicts an onset of convection. We expect these predictions to
FIG. 2. (a) The decay ratav”(k,He) for free waves on the pe easy to verify or falsify in an experiment.
surface of a ferrofluid exposed to a normal magneétig,. Solid On the other hand, an experimental check of the validity

lines (dotg denote the mesoscopfhydrodynami¢ theory. For the
maximum investigated field intensity.,,= 15 kA/m the relative
deviation (b) does not exceed 4%c), (d) demonstrate how the
wave excitation frequency’ must be adapted to keep the the in-
viscid contributionwg(k,Hey) constant during the variation of the
field intensity. For the evaluation of the curves we used Es@).
and(57) and the material specifications for the ferrofluid APG J12
with an estimated magnetic relaxation timeef 3.8x 105 s.

of the constitutive equations is probably more subtle. The
magnetodissipative contribution is usually very small as
compared with the ordinary shear dissipation. Clearly, it be-
comes most pronounced if the ferrofluid is in solid body
rotation, where shear dissipation drops out. Unfortunately,
this special flow geometry—when introduced into the consti-
tutive equations of Shliomis and Liu—Ileads to temedis-
sipative fields. We therefore looked for a nonrotational flow
geometry, which is easy to realize and which fulfills the re-
culty one has to adapt the wave numbersuch that quire_ments of_small amplitude low frequency motion. As a
w%(kaext) as given by Eq(29) is held constant when vary- possible candidate we propose the flow fl_eld of free surface
. ) ; ; waves. On the basis of the two theoretical approaches at
ing Hey. This can be accomplished by simultaneously tun—h . . .

and we worked out the associated complex dispersion rela-

:?ig ut:]ee ;; ?\c/ii ei)étcét?rt]'g?iggq dueeneor? de?]légrgf tgs;g;‘t'sga;é_ tions. In the final expressions for the magnetodissipative con-
9 P P tribution we observe a different scaling behavior with the

cording to this protocol. As expected, the damping rate in-, . . ; L
creases with the field strength. The predictions of the tw shear viscosity, which could be traced back to the devia

approaches deviate by less than 4Bigs. 2a) and 2b)]. Yion between the constitutive equations. On the basis of the

i e . material specifications for a real ferrofluid and the experi-
With regard to the approximations made and the.uncerta|nt¥nenta| parameters for a low frequency surface wave experi-
of the material specifications this tiny difference is presum- -t we computed the damping rate and evaluated the dif-
ably too small to be resolved in a surface wave experimentf P ping

For completeness we show in Figgcand d) how the erence between the predictions. Unfortunately, the resulting

o , deviation is less than 4% and therefore smaller than the ex-
excitation frequencys’ must be adapted to guarantee a con- .
: o SR . pected experimental error.
stantwq during the variation of the field intensity.

magnetoviscous contributiody, . To circumvent this diffi-
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standard framework of irreversible thermodynamics. For ex- APPENDIX
perimental arrangements in which the magnetic relaxation . ) o .
processes can be considered infinitely fast, the two descrip- " this Appendix we sketch the derivation of the disper-
tions are equivalent. This is, e.g., the case if the ferrofluid i$1ON relations for surface waves within the two theoretical
composed of ferromagnetically soft particles, where the asPProaches.
sociated magnetic relaxation is usually very rapid as it is
dominated by the fast N process.

On the other hand, for ferrofluids composed of materials Due to Eq.(42) we introduce the scalar magnetic poten-
with a high specific magnetic anisotrofgg.g., elementary tials by

1. The mesoscopic approach
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H=-Vy, H@=-vy), (A1) with the so far undetermined coefficiemdsandB. It is al-
, , o ways understood that the real partopfs positive. Using the
which obey the following relations: balance equation for normal stres€43) and the kinematic
vr surface c_onditior(46) allows for us to expresa andB in
V2y=— 217 x )HOVZW V2y2=0. (A2)  terms of¢, resulting finally in Eq.(51).
Equation(A2) has been derived by using E(6) and the 2. The hydrodynamic approach
constitutive equatiori18). Invoking once more the low fre- Again Eq.(42) allows to introduce scalar magnetic poten-
quency approximation, the latter occurs in the form tials
. R D_ _
m=xh+ M= x| h+=(VxV) X Ho|. (A3) H™+H"==Vy, (A12)
H®) = —v ), (A13)
The potentialsy and 4?) are solved by
The linearization of Eq(11) is in the present case
™X = Kkzai (kx— ot)
= (1t How+ yee , (A4) a
(1+X) HDZM—OBtB—aHextﬁZv. (A14)
IJ}(Z):J(z)e—kzei(kx—wt). (A5)

From this equation and Ed41) we find that due to the
The boundary condition&!4), (45) yield the as yet unknown incompressibility of the flow, the magnetic potentials must

prefactors be harmonic. Therefore
~ _ 1 ~kzai (kx— ot)
_ T _ = ye e , (A15)
wz—[%Mo—ZTXHO vkz(l—g) —iw”§
X X (AG) l/I(Z)ZJ(Z)e—kZei(kX—wt)_ (A].G)
1+ r Using the boundary conditiong4) and (45) we find
W2 = 20127
7 2+XM0 2+ ——Hgrk (1 k”g, (A7) o B _ o
. EMrHext‘?zW(o)_(1_|,U«raw)§MO
whereq= Vk?—iw/[ v(1+ k/4)]. From Eq.(A4) and the ex- ES A —— . (A17)
pressions for the coefficient®\6) and (A7) it can be seen K=k
that the solution of the magnetic field equations couple to the o o o
velocity field w. This .coupling is removed in the absence of EMrHext‘?zW(o)"—MrgMO
the magnetodissipationr&0) and the result of the standard Z(z): (A18)
inviscid calculation[1] is recovered. These considerations 1+ p,—ip oo '
complete the solution of the magnetic field problem in terms
of the hydrodynamic variables. where ¢ W(O) denotes the derivative (yf/(z) at z=0 and
We now turn to the solution of the hydrodynamic prob- u=1+ x. Again it can be seen that the solution of the mag-
lem. From the linearized equatioi39) and (40) we elimi-  netic field equations couples to the velocity field In the

nate the gradient terms by operating twice with curl on theabsence of the magnetodissipatiam=(0) this coupling is
Navier-Stokes equation. Projecting on thexis and using removed and the result of the standard inviscid calculation
again Eq.(A3) we find [1] is recovered. Moreover, considering the low frequency
approximationaw<1 one finds that theeactive magnetic
field HR is exactly the same as in the absence of field dissi-
pation. Eliminating from the linearized equatiof9) and
(40) the gradient terms by operating twice with curl on the
Introducing again the plane-wave ansatz for the lateral denavier-Stokes equation and projecting on thaxis we find
pendence ofv, the vertical dependence is determined by

K
po—|1+7 7V?|V2w=0. (A8)

(pdy—nV )VZW__Q'Hext‘?t‘7 V% +a/L0Hext‘72

(92—K3)(92~9*)w=0, (A9) (A19>

with From the fact thaiy is harmonic,V2b, can be replaced by
ok — O A10 VZb,= pop _Mext ;2 (A20)
o= A (A10) 2RO T e T W

The proper solution of Eq(A9) remaining bounded foz ~ Using again the plane-wave ansatz for the lateral dependence
—xis of w, the z dependence is determined by

w(z) =A%+ Be¥, (A11) (92—K?)(92— g2 )w=0, (A21)
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with w(z)=Ae%+ Be®, (A23)
2 i

ay v with the so far undetermined coefficienésand B. Using

= 1+k '’ (A22) now aw<<1l and expressinEin terms of A and B by using

R . the kinematic boundary condition the requirement of non-
with the real part ofj positive. The proper solution fav(z) trivial solutions inA andB for the two stress boundary con-

remaining bounded foz— — is hence ditions results finally in Eq(52).
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