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Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory

Hanns Walter Mu¨ller1 and Andreas Engel2

1Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
2Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany

~Received 14 June 1999!

Part of the field dependent dissipation in ferrofluids occurs due to the rotational motion of the ferromagnetic
grains relative to the viscous flow of the carrier fluid. The classical theoretical description due to Shliomis„Zh.
Éksp. Teor. Fiz.61, 2411~1971! @Sov. Phy JETP34, 1291~1972!#… uses a mesoscopic treatment of the particle
motion to derive a relaxation equation for the nonequilibrium part of the magnetization. Complementary, the
hydrodynamic approach of Liu@Phys. Rev. Lett.70, 3580 ~1993!# involves only macroscopic quantities and
results in dissipative Maxwell equations for the magnetic fields in the ferrofluid. Different stress tensors and
constitutive equations lead to deviating theoretical predictions in those situations, where the magnetic relax-
ation processes cannot be considered instantaneous on the hydrodynamic time scale. We quantify these dif-
ferences for two situations of experimental relevance, namely, a resting fluid in an oscillating oblique field and
the damping of parametrically excited surface waves. The possibilities of an experimental differentiation
between the two theoretical approaches is discussed.@S1063-651X~99!15011-6#

PACS number~s!: 75.50.Mm, 47.32.2y, 47.35.1i
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I. INTRODUCTION

The interplay between hydrodynamic behavior and m
netic field sensitivity gives rise to a variety of new physic
effects and makes ferrofluids a fascinating subject of
search with many interesting technical applications@1–3#.
Practically all hydrodynamic properties can be modified
modulated by an external magnetic field. Although ve
similar effects are possible with electrically polarized fluid
the coupling of the fields to the hydrodynamics is more p
nounced in the magnetic case. Since the experimental
dling of strong magnetic fields is simpler than that of elect
ones, ferrofluids are the experimenters choice to analyze
field affected hydrodynamic motion.

On the other hand, a thorough theoretical understand
of the many aspects of ferrofluid motion is a rather ambitio
task@4,5#. This is in particular true if the motion is such th
dissipation effects are important. The theoretical analy
must then account for the deviations from and the relaxa
towards equilibrium in a consistent and quantitatively ac
rate way.

One of the interesting properties of ferrofluids is th
tunable viscosity which can be controlled by an exter
magnetic field. This so called magnetoviscous effect was
observed experimentally by McTague@6#. Qualitatively it
can be accounted for@7# by magnetic torques acting upon th
suspended ferromagnetic particles: depending on the rela
orientation between magnetic field and local vorticity t
particle rotation is hindered. The friction at the coated p
ticle surfaces generates an extra dissipation and thus lea
an enhanced effective viscosity. This additional rotatio
friction is described by a ‘‘rotational viscosity’’hR . Based
on the theory of rotational Brownian motion of nonintera
ing rigid dipoles, Shliomis@4# developed a theoretical de
scription of this effect. The basic ingredient is a relaxati
equation for the nonequilibrium part of the magnetizati
resulting from a stochastic description of an ensemble
ferromagnetic grains. This treatment allows us to derive
PRE 601063-651X/99/60~6!/7001~9!/$15.00
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analytic expression for the magnetic field dependence ofhR

@4#. We will refer to this approach as themesoscopictheory
since it starts with a rather detailed characterization of
processes occurring on a 10 nm scale in order to determ
macroscopic properties such as the viscosity.

Quite complementary, the same phenomena can be
scribed within the framework of nonequilibrium thermod
namics. Appropriate magnetic field variables must then
introduced into the set of relevant thermodynamic quantit
New dissipative currents show up when the system is dri
out of equilibrium. They are coupled to the thermodynam
forces by additional Onsager coefficients. This program w
carried out by Liu and co-workers in a series of pap
@5,8,9# and gave rise to what is called thehydrodynamic
Maxwell theory. Making no reference at all to the micr
scopic mechanism of dissipation this approach has the
pealing feature of being very general and applicable to e
trically or magnetically polarizable continuous media. As
every hydrodynamic theory the Onsager coefficients are
parameters which have to be determined experimentally
from a microscopic theory.

The detailed quantitative relation between the two th
retical approaches is presently not completely clear and th
has been some controversy in the literature over recent ye
In order to contribute to a clarification of this issue we i
vestigate in the present paper the consequences of both
mesoscopic and the hydrodynamic theory for two simple
perimental setups involving ferrofluids. On the one hand,
analyze the influence of an oscillating oblique magnetic fi
on a ferrofluid at rest, on the other hand we investigate
damping of parametrically driven surface waves on the f
rofluid in a constant external magnetic field perpendicular
the undisturbed surface. Both situations are easily acces
to experiments. Interestingly the two theoretical approac
give rise todifferent results for some of the relevant quan
ties. We finally discuss whether these differences are p
nounced enough to allow an experimental decision betw
the theories.
7001 © 1999 The American Physical Society
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II. EQUATIONS OF MOTION

The fluid motion is governed by the hydrodynamic b
ance equations for mass and linear momentum. For an
compressible ferrofluid~density r) with a velocity field
v(r ,t) these equations read as

“•v50, ~1!

r~] t1v•“ !v5“•P1rg, ~2!

whereP i j is the stress tensor containing reactive and di
pative contributions~see later! andg5(0,0,2g) is the accel-
eration due to gravity. The two theoretical approaches un
consideration differ in their expressions for the stress ten
and the field equations. It will turn out that they produ
different results when the magnetic relaxation timet ~usu-
ally between 1023 and 1026 s) cannot be neglected wit
respect to the time scale, 1/v say, of the hydrodynamic mo
tion. In those cases it is argued that the local magnetiza
M (r ,t) deviates from its local equilibrium valueMeq(r ,t)
giving rise to an additional dissipation, which we shall d
note here as ‘‘magnetodissipation.’’ This phenomenon is
sponsible for the field dependent viscosity@4,6,7#, the mag-
netovortical resonance@10,11#, or the spectacular negativ
viscosity effect@12–14# detected recently in ferrofluids.

In order to simplify the mathematics we make througho
this paper the following approximations which do not r
move the basic differences between the two approaches~i!
The magnetic fieldH within the ferrofluid is weak enough to
warrant a linear relationshipMeq5xH, where the suscepti
bility is supposed to be proportional to the densityr. ~ii ! The
local nonequilibrium magnetizationM deviates only slightly
from Meq . ~iii ! Magnetodissipation is treated in the so call
low-frequency limit characterized bytv!1.

A. Field equations in the mesoscopic theory

Following Shliomis@4# ~see also Ref.@1#! the stress tenso
for ferrofluids appears in the form

P i j
mes52S p1

m0

2
H2D d i j 1HiBj1h~¹ iv j1¹ jv i !

1
m0

2
« i jk~M3H!k . ~3!

In Eq. ~3! occurs the pressure fieldp(r ,t), the Maxwell
stress tensor with the inductionB5m0(H1M ), and the
usual dissipative contribution proportional to the shear v
cosity h. Moreover, the last term on the right-hand side
Eq. ~3! arises if the magnetization exhibits an off-equilibriu
component perpendicular toH. It is related to the magneto
dissipation and guarantees the symmetry of the stress te
if the local directions ofH and B do not coincide. The ap
pearance ofM in the stress tensor~3! requires an extra con
stitutive equation for the off-equilibrium componentdM
5M2xH of the magnetization. Under the above simplific
tions ~i!–~iii ! the following relation can be established@2#:

dM52txF] tH1~v•“ !H2
“3v

2
3HG , ~4!
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wheret denotes a relaxation time.
The magnetic part of the problem is treated in the fram

work of the magnetostatic approximation

“3H50, ~5!

“•B50. ~6!

With this simplification and the above expression for t
stress tensor~3! the hydrodynamics obeys the Navier-Stok
equation, which assumes the form

r] tv1r~v•¹!v52¹p1rg1h¹2v1m0~M•“ !H

1
m0

2
“3~M3H!. ~7!

B. The field equations of the hydrodynamic theory

The complete set of hydrodynamic Maxwell equations
given by Ref.@5#

] tD5¹3H2 jel , ] tB52¹3E, ~8!

¹•D5rel , ¹•B50,

whereE and D denote the electric and displacement field
For nonconducting ferrofluids there are no electric charge
currents, thusjel50 andrel50. The fieldsH andE split into
reactive and dissipative parts

H5HR1HD and E5ER1ED,

where HR5]e/]B and ER5]e/]D are derivatives of the
thermodynamic energy densitye and contain only equilib-
rium information. The dissipative fieldsHD andED represent
the off-equilibrium currents and are functions of the therm
dynamic forces. For isotropic isothermal situations and
glecting off-diagonal couplings they depend only on t
electromagnetic fields in the local rest frame and are gi
by @5#

HD52
a

m0
¹3~ER1v3B!

and

ED5
b

e0
¹3~HR2v3D!, ~9!

where the parametersa and b are Onsager coefficients. I
the present paper we restrict ourselves to ferrofluids wit
negligible dielectric susceptibilityxel.0 ~e.g., hydrocarbon
based ferrofluids! giving rise to b.0 ~see also Ref.@15#!
implying ED50. Moreover, the ratio between time an
space derivatives of fields, respectively, isv/(ck) and for
hydrodynamic frequenciesv&103 s21 and wavelengths
1/k;1023 m21 we may neglect the time derivative ofD in
the Maxwell equations~8!. This means that the magnet
field may be assumed to follow the fluid motion instan
neously. In this way we recover the magnetostatic field eq
tions
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¹•B50, ~10!

¹3H50.

At a liquid-air interface these fields are subjected to the us
continuity conditions for the normal component ofB and the
tangential component ofH.

Using incompressibility we get from Eqs.~8! and ~9! the
following constitutive relation for the dissipative field:

HD5
a

m0
@] tB1~v•¹!B2~B•¹!v#, ~11!

which is the analog todM in the approach of Shliomis. Fo
later use we introduce thereactivecontribution to the mag-
netization

MR5
1

m0
B2HR. ~12!

This definition differs from the ‘‘real’’ magnetizationM
5B/m02H in using only the reactive partHR of the mag-
netic field. The advantage of this formulation is that for t
present case of constant and scalar susceptibility the fi
B,HR, andMR5xHR are all parallel to each other@16#. The
fact that H and henceM are not parallel toB is the very
reason for the magnetodissipative effects@4–6# investigated
here.

With the assumption of the susceptibility being propo
tional to the densityr, the stress tensor of the fluid simplifie
to @5,17#

P i j
hyd52Fp1

m0

2
~HR!2Gd i j 1Hi

RBj1h~¹ jv i1¹ iv j !.

~13!

The fluid dynamics is therefore governed by the Navi
Stokes equation, which using Eq.~13! acquires the form

r] tv1r~v¹!v52¹p1rg1h¹2v1m0MR¹HR

1B3~¹3HD!. ~14!

The fourth term on the right-hand side of the Navier-Stok
equation was simplified to involve only the magnitudes
the vectorsMR and HR by exploiting the fact that they ar
parallel.

C. Comparison between the two approaches

Let us first emphasize that the two descriptions introdu
above are fully equivalent if the magnetic relaxation p
cesses can be considered to be instantaneous (t5a50) on
the time scale of the hydrodynamic motion. In this case
vanishing magnetodissipation we havedM5HD50, i.e.,
MR5M iH5HR, and thus the stress tensors~3! and ~13! or,
respectively, the Navier-Stokes equations~7! and ~14! coin-
cide.

Differences between the two approaches arise due to
treatment of the magnetodissipation occurring at finitedM
and HD, respectively. By comparing Eqs.~3! and ~13! and
expressing the antisymmetric part of the tensor elem
al

ds

-

-

s
f

d
-

f
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Hi
DBj in Eq. ~13! by (1/2)« i jk(HD3B)k52(m0/2)« i jk(M

3H)k one arrives at

P i j
hyd2P i j

mes5m0H•HDd i j 2
1

2
~Hi

DBj1H j
DBi !, ~15!

where terms of order (HD)2 have been dropped. The stre
tensors in Eq.~15! differ by a diagonal element and a sym
metric nondiagonal contribution. For incompressible flui
the isotropic increment just leads to a renormalization of
pressure, which we won’t pursue here. The nondiagonal
crement, however, gives rise to a dissipative force wh
might be detectable in an experiment~see below!.

It is also instructive to compare the constitutive equatio
which determine the dissipative fields: From the identity

m0~H1M !5B5m0~HR1MR!5m0~11x!HR ~16!

one finds that the dissipative field contributionsdM andHD

coincide up to a prefactor:

HD52
1

11x
~M2xH!52

1

11x
dM . ~17!

The associated constitutive relations

dM52txF] tH1~v•¹!H2
1

2
~¹3v!3HG ~18!

HD5
a

m0
@] tB1~v•¹!B2~B•¹!v#, ~19!

however, are not fully compatible: Omitting the contrib
tions of O(av)2, Eq. ~19! can be re-cast as

HD5a~11x!@] tH1~v•¹!H2~H•¹!v#. ~20!

By comparing the two first terms on the right-hand side
Eqs. ~18! and ~20! and using Eq.~17! one can relate the
characteristic relaxation times by@18#

a5t
x

~11x!2
. ~21!

The third terms in Eqs.~18! and~20! describe different phys-
ics. This is easy to see by considering a homogeneous
tionary magnetic field: According to the mesoscopic theo
Eq. ~18!, only a rotational flow is able to drive a magnet
dissipative field. Contrary in the hydrodynamic approa
Eq. ~20! states that a flow gradient parallel to the magne
field suffices to excite a finiteHD. It is interesting to point
out that the deviation between the constitutive equatio
Eqs. ~18! and ~20!, drops out for a solid body rotation flow
field v5v3r , which is often investigated in the ferroflui
literature.

To summarize this section: We observe two differenc
between the classical description of Shliomis and the hyd
dynamic Maxwell theory of Liu: One in the stress tenso
P i j and a second in the constitutive equations for the di
pative fieldsdM andHD, respectively. In the following we
investigate the possibilities of an experimental differentiat
between the two theoretical approaches.
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III. FERROFLUID AT REST IN AN OBLIQUE
OSCILLATING MAGNETIC FIELD

We consider a resting ferrofluid layer exposed to a l
early polarized magnetic fieldH(2)5(Hx

(2),0,Hz
(2))cosvt di-

rected oblique to the surface. Here and in the followin
fields in the air carry the superscript ‘‘~2!,’’ while fields
within the ferrofluid are denoted without superscript.

The stress tensor in the air above the ferrofluid is taken

P i j
(2)52Fpatm1

m0

2
~H (2)!2Gd i j 1Hi

(2)Bj
(2) , ~22!

where we assume a constant atmospheric pressurepatm.
For a fluid at rest the constitutive equations~18! and~19!

coincide and thus eventual discrepancies between the
theories will result from the deviating stress tensors. To
possible differences we evaluate the tangential forcef t

5Pxz2Pxz
(2) acting upon a free surface element. By usi

the magnetic interface conditions forH andB and owing to
the fact that isotropic tensor elements do not contribute
tangential forces we obtain

f t
mes5

m0

2
~dMxHz2dMzHx!52

m0

2
tx@Hz] tHx2Hx] tHz#

~23!

and

f t
hyd52Hx

DBz52
a

m0
Bz] tBx . ~24!

The computation off t requires knowledge ofH andB within
the ferrofluid. From the respective constitutive equations
the interface conditions we find

Hmes5
1

2 FHx
(2),0,

Hz
(2)

11x2 ivtxGeivt1c.c. ~25!

Bhyd5
m0

2 F Hx
(2)

1

11x
1 iva

,0,Hz
(2)Geivt1c.c. ~26!

Evaluating the tangential stresses~23! and~24! up to leading
order intv or, respectively,av we get

f t
mes5O„~tv!2

… ~27!

and

f t
hyd5

m0

2
av~11x!Hx

(2)Hz
(2)sin 2vt1O„~av!2

….

~28!

At the considered accuracy level, the mesoscopic appro
states that the resting ferrofluid is in equilibrium, while t
hydrodynamic Maxwell theory predicts a residual tangen
surface force oscillating with twice the excitation frequenc
This force drops out in the static limitv→0 or when the
applied field is directed normally or tangentially to the su
face. The maximum effect is achieved for an inflection an
of 45°, where the product of the incident field compone
-

,

s

o
st

o

d

ch

l
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-
e
s

Hx
(2)Hz

(2) is maximum. We conclude that the resting flu
cannot be in equilibrium, i.e., the force will drive a conve
tive motion. With the aid of appropriate tracer particles e
posed to the surface of the fluid we expect the acceleratio
be easily detectable in an experiment.

IV. SURFACE WAVES WITH MAGNETODISSIPATION

In this section we investigate a setup, which aims at pr
ing the different constitutive relations@Eqs. ~18! and ~19!#.
As outlined in Sec. II C a nonrotational flow profile is mo
appropriate for this purpose. Surface waves on a deep fl
are a classical example: The associated flow field is pu
potential, except in a thin boundary layer along the syst
boundaries. By increasing the system dimensions this p
sitic influence can be limited to the viscous skin layer b
neath the free surface. Our aim is to derive the comp
dispersion relation for low frequency small amplitude su
face waves with magnetodissipation taken into account.

A. Surface waves without magnetodissipation

In this subsection we review the present knowledge
small amplitude surface waves on a ferrofluid in a sta
magnetic fieldHext normal to the surface. Withz5z(x,t)
}ei (kx2vt) we denote the surface deflection in verticalz di-
rection depending on the horizontal coordinatex and on time
t. The real part of the complex valued functionv(k)
5v8(k)1 iv9(k) reflects the wave dispersion, while th
imaginary part accounts for the decay rate.

For a nonviscous (h50) ferrofluid v9(k) vanishes iden-
tically and the inviscid wave dispersion~indicated by the
subscript, ‘‘0’’! is given by@1,19#

v0
2~k,Hext!5gk2

m0

r

x2

~11x!~21x!
Hext

2 k21
g

r
k3.

~29!

Hereg denotes the coefficient of surface tension. The m
netic field leads to a negative contribution proportional tok2.
If Hext is sufficiently strongv0

2 becomes negative, indicatin
the onset of the Rosensweig instability.

The effect of viscosity on the dispersion has been inv
tigated theoretically in Refs.@20,21# under the assumption o
an infinitely fast magnetic relaxation~vanishing magnetodis
sipative effect!. It is found that the expression forv(k) can
no longer be given explicitly, rather the following implic
relation applies,

D~k,v!5v22v0
2~k!1X~k,v!50 ~30!

where the viscous contribution reads

X~k,v!54ivnk214~nk2!2H q

k
21J . ~31!

Heren5h/r is the kinematic viscosity andq5Ak22 iv/n.
Note that the viscous contribution does not depend on
magnetic field and therefore coincides with the express
for nonmagnetic fluids@22#. This is because the magnet
contributions to the stress tensor are purely conservativ
vanishingdM or HD. In the mathematical derivation of Eqs
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~30! and~31! this is reflected by a decoupling of the magn
tostatic from the hydrodynamic problem. Later we will s
that this simplification no longer applies if magnetodissip
tive corrections are taken into account.

B. Formulation of the problem
with magnetodissipation included

The investigation requires solving the equations of mot
together with appropriate boundary conditions at the free
uid air interface. We consider a horizontally unbounded f
rofluid layer of infinite depth~from z50 to z52`) in con-
tact with air at its free surface. The layer is exposed to
external stationary magnetic fieldHext5(0,0,Hext) directed
perpendicularly to the undisturbed surface~see Fig. 1!.

The balances of the normal and tangential stresses a
liquid air interface are expressed by the conditions

ni~P i j 2P i j
(2)!nj52g~¹ jnj !ni , ~32!

t i~P i j 2P i j
(2)!nj50, ~33!

wheret(r ,t) and n(r ,t) denote local unit vectors tangenti
and normal to the surface, respectively. The stress tens
the air above the ferrofluid is given by Eq.~22!. The discon-
tinuity of the normal stress condition arises by virtue of t
finite surface tensiong. The kinematic surface condition re
quires

] tz1u]xz5w, ~34!

wherev5(u,0,w). The second lateral space directiony need
not be considered.

As usual the boundary conditions for the magnetic field
the free surface read as

~B2B(2)!•n50, ~35!

~H2H(2)!•t50. ~36!

FIG. 1. Sketch of the experimental setup. A ferrofluid of infin
lateral extension and infinite depth is exposed to a stationary m
netic fieldHext directed normally to the surface.
-

-

n
-
-

n

he

in

t

C. The motionless state and linearized equations
for the perturbations

As reference state~index 0! we consider the motionles
(v50) fluid with a flat (z50) surface. The associated ma
netic quantities are

B05B0
(2)5~0,0,m0Hext!, ~37!

M05S 0,0,
x

11x
HextD ,

H05S 0,0,
1

11x
HextD ,

H0
(2)5~0,0,Hext!,

HD5dM50.

From the momentum balance with the appropriate bound
condition we get for the pressure

p0~x,z!52rgz2
m0

2 F x

11xG2

Hext
2 . ~38!

Next we study the time evolution of small perturbations
linearizing the field equations and their boundary conditio
around the basic state solution. To this end we introd
small deviations denoted byv5(u,0,w), dp, z, b, b(2), h,
h(2), m. Linearizing the Navier-Stokes equations~7! and
~14! we, respectively, find for the mesoscopic and the hyd
dynamic approach

r] tv52¹dp1hDv1m0M0]zh1
m0

2
¹

3@M03h1m3H0# ~39!

and

r] tv52¹dp1hDv1m0M0¹hz1m0Hext~¹Hz
D2]zH

D!.

~40!

Here we have exploited the fact thatH0 and M0 are both
parallel to thez direction. The linear magnetostatic fiel
equations remain unchanged

05¹•b5¹•b(2) ~41!

05¹3h5¹3h(2). ~42!

The boundary conditions~35! and ~36! are linearized by us-
ing the lowest order expressions

n5S 2
]z

]x
,0,1D and t5S 1,0,

]z

]xD ~43!

to get

bz5bz
(2) , ~44!

hx2hx
(2)5M0

]z

]x
~45!

g-
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for the magnetic interface conditions. The kinematic surfa
condition simplifies to

] tz5w, ~46!

while we get

052rgz1dp1m0M0mz22h]zw1g]x
2z ~47!

for the normal stress balance at the surface. Introducing
dimensionless magnetodissipative perturbation paramete

k5
am0

h
Hext

2 5
tm0x

h~11x!2
Hext

2 , ~48!

the condition for the tangential stress reads in the mesosc
approach

k

4
~]xw2]zu!5~]zu1]xw!, ~49!

whereas for the hydrodynamic Maxwell theory we simp
find

B0Hx
D5h~]zu1]xw!. ~50!

To elucidate the time evolution of the perturbed state
assume for all lateral field dependencies a plane wave be
ior }exp@i(kx2vt)#, e.g., v5 v̄(z)exp@i(kx2vt)# or z

5 z̄ exp@i(kx2vt)#, etc. The associatedz dependence~if ap-
propriate! is indicated by a bar. We now first determine t
magnetic fields from Eqs.~41! and ~42! in terms of the sur-
face deflectionz and the flow fieldv using the boundary
conditions~44! and~45!. Then we solve for the velocity field
and impose the hydrodynamic boundary conditions~49! and
~50!, respectively. The condition for nontrivial solutions
Eq. ~47! finally yields the desired complex dispersion re
tion v(k). The explicit calculations are sketched in the A
pendix.

D. Results

The expressions we find for the implicit dispersion re
tion D(k,v) are of the form

05D mes~v,k!5v22v0
2~k!14ivnk214~nk2!2H q̃

k
21J

2k~nk2!2
x

21x H q̃

k
21J , ~51!

05D hyd~v,k!5~v212ivnk2!

12
2nk2

iv
1k

nk2

iv

x

x12

11k
nk2

iv

2v0
2~k!12~21k!n2k3q̂

11
k

x12

11k
nk2

iv

,

~52!
e

he

ic

e
v-

-

with

q̃25k22
iv

n~11k/4!
, ~53!

q̂25

k22
iv

n

11k
. ~54!

We analyze these results in the following for a ferroflu
with a magnetic susceptibility and viscosity appropriate
surface wave experiments@e.g., APG J12~Ref. @23#! Ferrof-
luidics#. In a moderate external field up toHext515 kA/m,
which is below the Rosensweig threshold, the constant s
ceptibility approximation holds with an error better than 4%
At this field strength the perturbation parameter given by E
~51! is smaller than 0.06. For a quantitative investigation
the magnetodissipative effect it is therefore sufficient to
pandD(k,v) up to first order ink giving

D~k,v!5v22v0
21X~k,v!1kXM~k,v,Hext!1O~k2!,

~55!

with the magnetodissipative contributions

XM
mes~k,v,Hext!5~nk2!2H iv

2nkq
2

x

21x H q

k
21J J

~56!

in the mesoscopic theory and

XM
hyd~k,v,Hext!5

2ivnk2

21x
12~nk2!2S q

k
21D

3F41x

21x
12i

nk2

v G ~57!

in the hydrodynamic approach. We observe a different s
ing behavior with the shear visosityn. The magnetodissipa
tive correction according to Eq.~56! scales withn3/2, while it
is only proportional ton in Eq. ~57!. This deviating propor-
tionality traces back to the constitutive equations. Accord
to Eq. ~18! magnetodissipation is associated with rotation
flow and thus confined to the thin boundary layer beneath
surface, where damping is proportional ton3/2 @24#. This is in
contrast to Eq.~19!, where the dissipative fieldHD is finite
over the whole fluid layer. In particular, dissipation with
the convective bulk, which is known@25# to scale withn,
provides the leading contribution to Eq.~57!.

Due to the smallness ofk, the magnetodissipative contr
butionkXM(k,v) modifies the ordinary viscous shear dam
ing X(k,v) only slightly. Moreover, when studying the fiel
dependence of the damping ratev9(k,Hext) one has to ac-
count for appreciable wave-number shifts resulting from
nondissipative magnetic contribution

2
m0

r

x2

~11x!~21x!
Hext

2 k2, ~58!

in D(k,v). SinceX(k,v) in turn is largelyk dependent, the
reactive term~58! strongly feeds back into the effective fiel
dependence ofv9(Hext ,k) and therefore masks the tin
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magnetoviscous contributionXM . To circumvent this diffi-
culty one has to adapt the wave numberk such that
v0

2(k,Hext) as given by Eq.~29! is held constant when vary
ing Hext . This can be accomplished by simultaneously tu
ing the wave excitation frequencyv8 during theHext-scan.
Figure 2~a! depicts the field dependence ofv9 evaluated ac-
cording to this protocol. As expected, the damping rate
creases with the field strength. The predictions of the t
approaches deviate by less than 4%@Figs. 2~a! and 2~b!#.
With regard to the approximations made and the uncerta
of the material specifications this tiny difference is presu
ably too small to be resolved in a surface wave experim
For completeness we show in Figs. 2~c! and 2~d! how the
excitation frequencyv8 must be adapted to guarantee a co
stantv0 during the variation of the field intensity.

V. SUMMARY AND DISCUSSION

The aim of the present paper was to compare two dif
ent theoretical approaches to the problem of magnetic fi
dependent dissipation in ferrofluids. On the one hand,
considered the theory given by Shliomis resting on a me
scopic treatment of the rotation of the magnetic particles.
the other hand we applied the hydrodynamic Maxwell the
advocated by Liu which treats field dissipation within t
standard framework of irreversible thermodynamics. For
perimental arrangements in which the magnetic relaxa
processes can be considered infinitely fast, the two desc
tions are equivalent. This is, e.g., the case if the ferrofluid
composed of ferromagnetically soft particles, where the
sociated magnetic relaxation is usually very rapid as it
dominated by the fast Ne´el process.

On the other hand, for ferrofluids composed of materi
with a high specific magnetic anisotropy~e.g., elementary

FIG. 2. ~a! The decay ratev9(k,Hext) for free waves on the
surface of a ferrofluid exposed to a normal magneticHext . Solid
lines ~dots! denote the mesoscopic~hydrodynamic! theory. For the
maximum investigated field intensityHext515 kA/m the relative
deviation ~b! does not exceed 4%.~c!, ~d! demonstrate how the
wave excitation frequencyv8 must be adapted to keep the the i
viscid contributionv0(k,Hext) constant during the variation of th
field intensity. For the evaluation of the curves we used Eqs.~56!
and ~57! and the material specifications for the ferrofluid APG J
with an estimated magnetic relaxation time oft53.831025 s.
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-
o

ty
-
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-
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s-
s

s

cobalt or cobalt ferrites! the magnetic relaxation process
largely dominated by the Brownian rotation of the particl
in the carrier matrix. In high viscosity carrier fluids the a
sociated Brownian relaxation time can be large and reach
time scale of the hydrodynamic motion. This is the situati
in which magnetodissipation must be accounted for. W
have shown that this effect is treated differently by the a
proaches of Shliomis and Liu due to the use of differe
stress tensors as well as distinct constitutive equations for
dissipative fields.

In a ferrofluid layer at rest the constitutive equations c
incide. If the surface is exposed to an oblique linearly pol
ized magnetic field, the differing stress tensors lead to diff
ent statements about whether the resting ferrofluid is
equilibrium or not: Whereas the mesoscopic approach g
no deviation from equilibrium the hydrodynamic theory pr
dicts an onset of convection. We expect these prediction
be easy to verify or falsify in an experiment.

On the other hand, an experimental check of the valid
of the constitutive equations is probably more subtle. T
magnetodissipative contribution is usually very small
compared with the ordinary shear dissipation. Clearly, it
comes most pronounced if the ferrofluid is in solid bo
rotation, where shear dissipation drops out. Unfortunate
this special flow geometry—when introduced into the con
tutive equations of Shliomis and Liu—leads to thesamedis-
sipative fields. We therefore looked for a nonrotational flo
geometry, which is easy to realize and which fulfills the r
quirements of small amplitude low frequency motion. As
possible candidate we propose the flow field of free surf
waves. On the basis of the two theoretical approache
hand we worked out the associated complex dispersion r
tions. In the final expressions for the magnetodissipative c
tribution we observe a different scaling behavior with t
shear viscosityn, which could be traced back to the devi
tion between the constitutive equations. On the basis of
material specifications for a real ferrofluid and the expe
mental parameters for a low frequency surface wave exp
ment we computed the damping rate and evaluated the
ference between the predictions. Unfortunately, the resul
deviation is less than 4% and therefore smaller than the
pected experimental error.
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APPENDIX

In this Appendix we sketch the derivation of the dispe
sion relations for surface waves within the two theoreti
approaches.

1. The mesoscopic approach

Due to Eq.~42! we introduce the scalar magnetic pote
tials by
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H52¹c, H(2)52¹c (2), ~A1!

which obey the following relations:

¹2c52
xt

2~11x!
H0¹2w, ¹2c (2)50. ~A2!

Equation ~A2! has been derived by using Eq.~6! and the
constitutive equation~18!. Invoking once more the low fre
quency approximation, the latter occurs in the form

m5xh1dM5xFh1
t

2
~¹3v!3H0G . ~A3!

The potentialsc andc (2) are solved by

c52
tx

2~11x!
H0w1c̄ekzei (kx2vt), ~A4!

c (2)5c̄ (2)e2kzei (kx2vt). ~A5!

The boundary conditions~44!, ~45! yield the as yet unknown
prefactors

c̄52H x

21x
M02

tx

21x
H0Fnk2S 12

q̃

k
D 2 ivG J z̄

~A6!

c̄ (2)5F11x

21x
M01

tx

21x
H0nk2S 12

q̃

k
D G z̄, ~A7!

whereq̃5Ak22 iv/@n(11k/4)#. From Eq.~A4! and the ex-
pressions for the coefficients~A6! and ~A7! it can be seen
that the solution of the magnetic field equations couple to
velocity field w. This coupling is removed in the absence
the magnetodissipation (t50) and the result of the standar
inviscid calculation@1# is recovered. These consideratio
complete the solution of the magnetic field problem in ter
of the hydrodynamic variables.

We now turn to the solution of the hydrodynamic pro
lem. From the linearized equations~39! and ~40! we elimi-
nate the gradient terms by operating twice with curl on
Navier-Stokes equation. Projecting on thez axis and using
again Eq.~A3! we find

Fr] t2S 11
k

4Dh¹2G¹2w50. ~A8!

Introducing again the plane-wave ansatz for the lateral
pendence ofw, the vertical dependence is determined by

~]z
22k2!~]z

22q̃2!w̄50, ~A9!

with

q̃25k22
iv

n~11k/4!
. ~A10!

The proper solution of Eq.~A9! remaining bounded forz
→2` is

w̄~z!5Aekz1Beq̃z, ~A11!
e
f

s

e

e-

with the so far undetermined coefficientsA and B. It is al-
ways understood that the real part ofq̃ is positive. Using the
balance equation for normal stresses~47! and the kinematic
surface condition~46! allows for us to expressA and B in
terms ofz̄, resulting finally in Eq.~51!.

2. The hydrodynamic approach

Again Eq.~42! allows to introduce scalar magnetic pote
tials

HR1HD52¹c, ~A12!

H(2)52¹c (2). ~A13!

The linearization of Eq.~11! is in the present case

HD5
a

m0
] tB2aHext]zv. ~A14!

From this equation and Eq.~41! we find that due to the
incompressibility of the flow, the magnetic potentials mu
be harmonic. Therefore

c5c̄ekzei (kx2vt), ~A15!

c (2)5c̄ (2)e2kzei (kx2vt). ~A16!

Using the boundary conditions~44! and ~45! we find

c̄5

a

k
m rHext]zw̄~0!2~12 im rav!z̄M0

11m r2 im rav
, ~A17!

c̄ (2)5

a

k
m rHext]zw̄~0!1m r z̄M0

11m r2 im rav
, ~A18!

where ]zw̄(0) denotes the derivative ofw̄(z) at z50 and
m r511x. Again it can be seen that the solution of the ma
netic field equations couples to the velocity fieldw. In the
absence of the magnetodissipation (a50) this coupling is
removed and the result of the standard inviscid calculat
@1# is recovered. Moreover, considering the low frequen
approximationav!1 one finds that thereactivemagnetic
field HR is exactly the same as in the absence of field dis
pation. Eliminating from the linearized equations~39! and
~40! the gradient terms by operating twice with curl on t
Navier-Stokes equation and projecting on thez axis we find

~r] t2h¹2!¹2w52aHext] t]z¹
2bz1am0Hext

2 ]z
2¹2w.

~A19!

From the fact thatc is harmonic,¹2bz can be replaced by

¹2bz5m0m r

aHext

12 im rav
]z¹

2w. ~A20!

Using again the plane-wave ansatz for the lateral depend
of w, thez dependence is determined by

~]z
22k2!~]z

22q̂2!w̄50, ~A21!
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with

q̂25

k22
iv

n

11k
, ~A22!

with the real part ofq̂ positive. The proper solution forw̄(z)
remaining bounded forz→2` is hence
5

R

.

ys
w̄~z!5Aekz1Beq̂z, ~A23!

with the so far undetermined coefficientsA and B. Using
now av!1 and expressingz̄ in terms ofA andB by using
the kinematic boundary condition the requirement of no
trivial solutions inA andB for the two stress boundary con
ditions results finally in Eq.~52!.
h.

.
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